starstarstarstarstar_half
Materials are the physical foundations for the development of science and technology. The human civilizations are historically designated by the evolution of materials, such as the Stone Age, the Bronze Age and the Iron Age. Nowadays, materials science and technology support most of the industrial sectors, including aerospace, telecommunications, transportation, architecture, infrastructure and so on. Fundamentals of Materials Science is a core module for undergraduates majored in materials science and engineering. This English course will be taught by Prof. Guo Qiang, Prof. Reddy and Prof. Liu Jing from Shanghai Jiao Tong University. An integrated approach of combining metallic, ceramic and polymeric materials will be adopted in this course, for the attendants to attain a deep understanding on the correlation of composition, microstructure, processing and properties in materials science. Let’s gather in this course and explore the wonderland of materials together.
    starstarstarstarstar_half
    Archaeoastronomy is the “science of stars and stones”. It is an interdisciplinary science in between architecture, archaeology, and astronomy. It studies the relationships between the ancient monuments and the sky, in order to gain a better understanding of the ideas of the architects of the past and of their religious and symbolic world. The course provides the first complete, easy introduction to this fascinating discipline. During the course, many spectacular ancient sites of archaeology – such as Stonehenge in England, Giza and Karnak in Egypt, Chichen Itzá in the Yucatan, Macchu Picchu in Peru and the Pantheon in Rome – will be visited and the fascinating events occurring there in special days of the year (such as solstices, equinoxes, or the day of the foundation of Rome) will be shown and explained. The course also provides the necessary background on Astronomy with the naked eye and a general introduction to the role of Astronomy in religion and in the management of power among ancient cultures.
      starstarstarstarstar_border
      Ce cours vous introduit à la physique subatomique, c'est à dire à la physique du noyau et à celle des particules élémentaires. Plus spécifiquement les questions adressées sont les suivantes : - Quels sont les concepts de la physique des particules et comment sont-ils implémentés? - Quelles sont les propriétés du noyau atomique et comment peut on les utiliser? - Comment accélérer et détecter des particules et mesurer leurs propriétés? - Qu’est-ce qu’on apprend à partir des réactions de particules à haute énergie et leurs désintégrations? - Comment fonctionnent les interactions électromagnétiques et comment peut-on les mettre à contribution? - Comment fonctionnent les interactions fortes et pourquoi sont-elles difficiles à comprendre? - Comment fonctionnent les interactions faibles et pourquoi sont-elles spéciales? - Quelle est la masse des objets au niveau subatomique, et comment y intervient le Higgs? - Que peut-on apprendre de la physique des particules concernant l’astrophysique et l’Univers tout entier? Le cours est structuré en sept modules. Suivant le premier module qui introduit notre sujet, les modules 2 (Physique nucléaire) et 3 (Accélérateurs et détecteurs) dépendent peu du reste du cours et peuvent être étudiés séparément. Les modules 4 à 7 approfondissent les notions de la matière et des forces élémentaires.
        starstarstarstarstar_border
        This course is devoted to selected problems of classical (theoretical) and fluid mechanics which are usually remain outside the standard course of mechanics. Despite the fact that the course is aimed at students with an understanding of the methods and approaches of classical and fluid mechanics, several lectures of the course are devoted to revision of material from the course of classical (theoretical) mechanics. The course is aimed at an audience interested in theoretical physics methods for solving problems of classical and fluid mechanics. The course is designed for an audience that has previously attended general course of classical and fluid mechanics and courses of higher mathematics: mathematical analysis and differential equations theory.
          starstarstarstarstar_half
          How are astronomers approaching their search for life in the universe? What have we learned from the surge of exoplanets discoveries? How likely is it that Earth does not host the only life in the Universe? In this course we explore the field of astrobiology, an emerging multidisciplinary field. Progress in astrobiology is driven by telescopes on the ground and in space, and by new insights on how life emerged on Earth and its diversity. The topics in this course range from the science of how exoplanets are detected, to the chemistry that supports the argument that the ingredients for life are common in the Universe. We will follow the analyses of experts in chemistry, astronomy, geology and archaeology to build a strong foundation of understanding. By the final assignment, students will be equipped with the knowledge necessary to identify what makes a planet habitable, and how likely it is that life exists there. Students will graduate from this course informed about one of the most exciting fields in all of science, and ready to discuss the current exoplanet news stories and discoveries.
            starstarstarstarstar_half
            In this course we will seek to “understand Einstein,” especially focusing on the special theory of relativity that Albert Einstein, as a twenty-six year old patent clerk, introduced in his “miracle year” of 1905. Our goal will be to go behind the myth-making and beyond the popularized presentations of relativity in order to gain a deeper understanding of both Einstein the person and the concepts, predictions, and strange paradoxes of his theory. Some of the questions we will address include: How did Einstein come up with his ideas? What was the nature of his genius? What is the meaning of relativity? What’s “special” about the special theory of relativity? Why did the theory initially seem to be dead on arrival? What does it mean to say that time is the “fourth dimension”? Can time actually run more slowly for one person than another, and the size of things change depending on their velocity? Is time travel possible, and if so, how? Why can’t things travel faster than the speed of light? Is it possible to travel to the center of the galaxy and return in one lifetime? Is there any evidence that definitively confirms the theory, or is it mainly speculation? Why didn’t Einstein win the Nobel Prize for the theory of relativity? About the instructor: Dr. Larry Lagerstrom is the Director of Academic Programs at Stanford University’s Center for Professional Development, which offers graduate certificates in subjects such as artificial intelligence, cyber security, data mining, nanotechnology, innovation, and management science. He holds degrees in physics, mathematics, and the history of science, has published a book and a TED Ed video on "Young Einstein: From the Doxerl Affair to the Miracle Year," and has had over 30,000 students worldwide enroll in his online course on the special theory of relativity (this course!).
              starstarstarstarstar_half
              Welcome to this Big History course! In this course, renowned scientists and scholars from the University of Amsterdam and beyond will take you on a journey from the Big Bang until today while addressing key questions in their fields. After completing this journey you will have developed a better understanding of how you and everything around you became the way they are today. You will also have gained an understanding of the underlying mechanisms that have helped shape the history of everything and how they wil help shape the future. Last but not least, you will have developed the skill to use this knowledge to put smaller subjects into a bigger perspective with the aid of the little big history approach, which can help you develop some new ideas on these smaller subjects.
                starstarstarstarstar_half
                This course trains you in the skills needed to program specific orientation and achieve precise aiming goals for spacecraft moving through three dimensional space. First, we cover stability definitions of nonlinear dynamical systems, covering the difference between local and global stability. We then analyze and apply Lyapunov's Direct Method to prove these stability properties, and develop a nonlinear 3-axis attitude pointing control law using Lyapunov theory. Finally, we look at alternate feedback control laws and closed loop dynamics. After this course, you will be able to... * Differentiate between a range of nonlinear stability concepts * Apply Lyapunov’s direct method to argue stability and convergence on a range of dynamical systems * Develop rate and attitude error measures for a 3-axis attitude control using Lyapunov theory * Analyze rigid body control convergence with unmodeled torque
                  starstarstarstarstar_border
                  This course introduces you to subatomic physics, i.e. the physics of nuclei and particles. More specifically, the following questions are addressed: - What are the concepts of particle physics and how are they implemented? - What are the properties of atomic nuclei and how can one use them? - How does one accelerate and detect particles and measure their properties? - What does one learn from particle reactions at high energies and particle decays? - How do electromagnetic interactions work and how can one use them? - How do strong interactions work and why are they difficult to understand? - How do weak interactions work and why are they so special? - What is the mass of objects at the subatomic level and how does the Higgs boson intervene? - How does one search for new phenomena beyond the known ones? - What can one learn from particle physics concerning astrophysics and the Universe as a whole? The course is structured in eight modules. Following the first one which introduces our subject, the modules 2 (nuclear physics) and 3 (accelerators and detectors) are rather self contained and can be studied separately. The modules 4 to 6 go into more depth about matter and forces as described by the standard model of particle physics. Module 7 deals with our ways to search for new phenomena. And the last module introduces you to two mysterious components of the Universe, namely Dark Matter and Dark Energy.
                    starstarstarstarstar_half
                    Most of the phenomena in the world around you are, at the fundamental level, based on physics, and much of physics is based on mechanics. Mechanics begins by quantifying motion, and then explaining it in terms of forces, energy and momentum. This allows us to analyse the operation of many familiar phenomena around us, but also the mechanics of planets, stars and galaxies. This on-demand course is recommended for senior high school and beginning university students and anyone with a curiosity about basic physics. (The survey tells us that it's often used by science teachers, too.) The course uses rich multimedia tutorials to present the material: film clips of key experiments, animations and worked example problems, all with a friendly narrator. You'll do a range of interesting practice problems, and in an optional component, you will use your ingenuity to complete at-home experiments using simple, everyday materials. You will need some high-school mathematics: arithmetic, a little algebra, quadratic equations, and the sine, cosine and tangent functions from trigonometry. The course does not use calculus. However, we do provide a study aid introducing the calculus that would accompany this course if it were taught in a university. By studying mechanics in this course, you will understand with greater depth many of the wonders around you in everyday life, in technology and in the universe at large. Meanwhile, we think you'll have some fun, too.